Improved RNA-seq Library Quality and Workflow Enabled by Automated Preparative Gel Electrophoresis

Chris Boles¹, Cristine Kinross², Anupama Khamnai¹, and Simran Singh¹
¹Sage Science, Beverly, MA 01915, USA • ²Epicentre (an Illumina company), 726 Post Road, Madison, WI 53713, USA

Introduction
Epicentre’s ScriptSeq™ v2 Kit provides high-quality, directional RNA-Seq libraries with minimal hands-on time, and only two library purification steps. Studies were carried out to evaluate the Sage Science Pippin Prep™ system for the library purifications steps. The Pippin Prep is a preparative gel electrophoresis system that offers several potential advantages for this application, including further reduction in hands-on time, efficient removal of low molecular weight library contaminants (nucleotides, primer/adaptor artifacts), better reproducibility, and accurate size-selection of the library. ScriptSeq v2 workflow and library quality were compared between protocols using the Pippin Prep and protocols using standard column- and bead-based cleanup methods.

Methods Overview
The Pippin Prep system is an automated, preparative electrophoresis system that includes a disposable five-channel precast agarose gel cassette and a computerized instrument that combines a power supply for electrophoresis with a fluorescence-based DNA detection unit. The cassette lanes are physically isolated from each other to prevent sample cross-contamination. DNA for library formation is collected in a membrane-delimited elution module. Fractionated DNA products are recovered in liquid buffer, and no gel extraction is required. Timing of DNA purification and detection, isolation, DNA for library formation, and gel extraction is collected in a membrane-delimited elution module. Fractionated DNA products are recovered in liquid buffer, and no gel extraction is required. Timing of DNA purification and detection, isolation, and tape sealed over the elution port. Libraries were visualized on an Agilent® BioAnalyzer. Duplicates were highly reproducible.

Results
Duplicate ScriptSeq v2 libraries were prepared from 5-ng samples of rat liver poly(A)+ mRNA (Stratagene). During the library generation process, the QiaQuick MinElute™-DNA purification step was replaced with the Pippin Prep. Purified cDNA was amplified by 15 cycles of PCR and purified by the Pippin Prep for subsequent sequencing. All Pippin Prep purifications were performed on a 2% agarose cassette, no overflow, detection, and tape sealed over the elution port. Libraries were visualized on an Agilent® BioAnalyzer. Duplicates were highly reproducible.

A patented terminal-tapping process generates directional RNA-seq libraries in approximately 4 hours from 500 pg to 50 ng of RNA. ScriptSeq Index PCR Primers (1-12) are available to add an Illumina® Index (barcode) to a RNA-Seq library prepared using the ScriptSeq v2 RNA-Seq Library Preparation Kit.

Figure 1. Schematic overview of the ScriptSeq™ v2 method.

Figure 2. The Pippin Prep™ system.

Figure 3. Plug-method to reduce Pippin Prep elution volumes.

Figure 4. Tight size selection of libraries.

DNA was purified on the Pippin Prep using a selection range of (A) 76-500 nt for Qiagen replacement, (B) 135-500 nt for AMPure XP replacement, or (C) for Pippin Prep (before PCR) and Pippin Prep (after PCR).

Table 1. Summary of sequencing metrics.

<table>
<thead>
<tr>
<th>Sample</th>
<th>library purification</th>
<th>Reads (M)</th>
<th>Reads Passing Filter (%)</th>
<th>Reads >Q30 (%)</th>
<th>Total Mapped Reads (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pippin</td>
<td>46.5</td>
<td>59.6</td>
<td>91.8</td>
<td>95</td>
<td>66.8</td>
</tr>
<tr>
<td>Qiagen</td>
<td>59.6</td>
<td>93.7</td>
<td>96.1</td>
<td>96.1</td>
<td>75.6</td>
</tr>
</tbody>
</table>

Conclusions
- Automation of purification steps in the ScriptSeq v2 workflow produces reproducible libraries of tight size-selection.
- Transcript coverage is the same among Qiagen MinElute, 1.0X AMPure XP, and Pippin Prep purifications.
- RNA-Seq libraries can be made from 500 pg to 50 ng of RNA with automated, reproducible purification.